RNAi-mediated silencing of Myc transcription inhibits stem-like cell maintenance and tumorigenicity in prostate cancer.

نویسندگان

  • Gianluca Civenni
  • Anastasia Malek
  • Domenico Albino
  • Ramon Garcia-Escudero
  • Sara Napoli
  • Stefano Di Marco
  • Sandra Pinton
  • Manuela Sarti
  • Giuseppina M Carbone
  • Carlo V Catapano
چکیده

Several studies link disease progression, recurrence, and treatment failures to the cancer stem-like cell (CSC) subpopulation within the heterogeneous tumor cell population. Myc is a transcription factor having a central function in stem cell biology and in human cancers. Hence, Myc represents an attractive target to develop CSC-specific therapies. Recent findings suggest that Myc transcription can be silenced using an RNA interference (RNAi)-based strategy that targets noncoding promoter-associated RNA (paRNA) overlapping the transcription start site. In this study, we investigated the effects of silencing Myc transcription on prostate CSC in cell culture and xenograft models of human prostate cancer. Treatment with an effective promoter-targeting siRNA reduced the fraction of CSCs, leading to reduced self-renewal, tumor-initiating, and metastatic capability. Combined analysis of stem-like cells and senescence markers indicated that Myc silencing triggered a phenotypic shift and senescence in the CSC subpopulation. Notably, systemic delivery of the promoter-targeting siRNA in the xenograft model produced a striking suppression in the development of prostate tumors. Our results support a pivotal role for Myc in CSC maintenance and show that Myc targeting via RNAi-based transcriptional silencing can trigger CSC senescence and loss of their tumor-initiating capability. More generally, our findings demonstrate the efficacy of RNAi-based transcriptional strategies and the potential to target regulatory noncoding paRNAs for therapeutic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor and Stem Cell Biology RNAi-Mediated Silencing ofMyc Transcription Inhibits Stem- like Cell Maintenance and Tumorigenicity in Prostate Cancer

Several studies link disease progression, recurrence, and treatment failures to the cancer stem-like cell (CSC) subpopulation within the heterogeneous tumor cell population. Myc is a transcription factor having a central function in stem cell biology and in human cancers. Hence, Myc represents an attractive target to develop CSC-specific therapies. Recent findings suggest that Myc transcription...

متن کامل

Inhibition of 5-lipoxygenase downregulates stemness and kills prostate cancer stem cells by triggering apoptosis via activation of c-Jun N-terminal kinase.

The cancer stem cell (CSC) concept suggests that neoplastic clones are maintained exclusively by a rare group of cells possessed with stem cell properties. CSCs are characterized by features that include self-renewal, pluripotency and tumorigenicity, and are thought to be solely responsible for tumor recurrence and metastasis. A hierarchically organized CSC model is becoming increasingly eviden...

متن کامل

مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19

 Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells.  Ai...

متن کامل

RNAi-mediated knockdown of E2F2 inhibits tumorigenicity of human glioblastoma cells

In a previous genome-wide expression profiling study, we identified E2F2 as a hyperexpressed gene in stem-like cells of distinct glioblastoma multiforme (GBM) specimens. Since the encoded E2F2 transcription factor has been implicated in both tumor suppression and tumor development, we conducted a functional study to investigate the pertinence of E2F2 to human gliomagenesis. E2F2 expression was ...

متن کامل

Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer

PR domain zinc finger protein 14 (PRDM14) maintains stemness in embryonic stem cells via epigenetic mechanisms. Although PRDM14 is elevated in several cancers, it is unclear if and how PRDM14 confers stem cell-like properties and epigenetic changes to cancer cells. Here, we examined the phenotypic characteristics and epigenetic and gene expression profiles of cancer cells that differentially ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 73 22  شماره 

صفحات  -

تاریخ انتشار 2013